Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Basic Clin Pharmacol Toxicol ; 131(6): 443-451, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2052269

ABSTRACT

GABA is a major inhibitory neurotransmitter that regulates the balance between excitatory and inhibitory circuits in the human nervous system. The GABA receptors are divided into three main subtypes, GABAA , GABAB , and GABAC (also termed GABAA rho) receptors. GABAA receptors are pentameric ligand-gated ion channels widely expressed throughout the central and peripheral nervous system. The activation of GABAA receptors results in opening of an anion-selective channel that mainly gates chloride ions and allows them to flow into the neuron, causing hyperpolarization of the cell membrane that dampens neural excitability. This makes GABAA receptors critical anaesthetic and analgesic targets for existing as well as for the development of novel drugs. In this review, we first summarize the biochemical properties of GABAA receptors and the clinical anaesthetics and analgesics targeting the receptors. In a forward-looking section, we summarize the emerging role of GABAergic signalling in treatment of COVID-19 related infections. Finally, we discuss the opportunities arising from targeting specific and unique subunit interfaces for the development of novel anaesthetics and analgesics leading to more efficient therapies.


Subject(s)
Analgesics , Anesthetics , Receptors, GABA-A , Humans , Analgesics/pharmacology , Analgesics/therapeutic use , Anesthetics/pharmacology , Anesthetics/therapeutic use , gamma-Aminobutyric Acid , COVID-19 Drug Treatment
2.
Molecules ; 27(11)2022 May 24.
Article in English | MEDLINE | ID: covidwho-1892922

ABSTRACT

BACKGROUND: Heterocyclic compounds and their fused analogs, which contain pharmacophore fragments such as pyridine, thiophene and pyrimidine rings, are of great interest due to their broad spectrum of biological activity. Chemical compounds containing two or more pharmacophore groups due to additional interactions with active receptor centers usually enhance biological activity and can even lead to a new type of activity. The search for new effective neurotropic drugs in the series of derivatives of heterocycles containing pharmacophore groups in organic, bioorganic and medical chemistry is a serious problem. METHODS: Modern methodology of drugs involves synthesis, physicochemical study, molecular modeling and selection of active compounds through virtual screening and experimental evaluation of the biological activity of new chimeric compounds with pharmacophore fragments. For the synthesis of new compounds, classical organic methods were used and developed. For the evaluation of neurotropic activity of new synthesized compounds, some biological methods were used according to indicators characterizing anticonvulsant, sedative and antianxiety activity as well as side effects. For docking analysis, various soft ware packages and methods were used. RESULTS: As a result of multistep reactions, 11 new, tri- and tetracyclic heterocyclic systems were obtained. The studied compounds exhibit protection against pentylenetetrazole (PTZ) seizures as well as some psychotropic effects. The biological assays evidenced that nine of the eleven studied compounds showed a high anticonvulsant activity by antagonism with pentylenetetrazole. The toxicity of the compounds is low, and they do not induce muscle relaxation in the studied doses. According to the study of psychotropic activity, it was found that the selected compounds have an activating behavior and anxiolytic effects on the "open field" and "elevated plus maze" (EPM) models. The data obtained indicate the anxiolytic (antianxiety) activity of the derivatives of tricyclic thieno[2,3-b]pyridines and tetracyclic pyridothieno[3,2-d]pyrimidin-8-ones, especially pronounced in compounds 3b-f and 4e. The studied compounds increase the latent time of first immobilization on the "forced swimming" (FS) model and exhibit antidepressant effects; compounds 3e and 3f especially exhibit these effects, similarly to diazepam. Docking studies revealed that compounds 3c and 4b bound tightly in the active site of γ-aminobutyric acid type A (GABAA) receptors with a value of the scoring function that estimates free energy of binding (∆G) at -10.0 ± 5 kcal/mol. Compound 4e showed the best affinity ((∆G) at -11.0 ± 0.54 kcal/mol) and seems to be an inhibitor of serotonin (SERT) transporter. Compounds 3c-f and 4e practically bound with the groove of T4L of 5HT_1A and blocked it completely, while the best affinity observed was in compound 3f ((∆G) at -9.3 ± 0.46 kcal/mol). CONCLUSIONS: The selected compounds have an anticonvulsant, activating behavior and anxiolytic effects and at the same time exhibit antidepressant effects.


Subject(s)
Anti-Anxiety Agents , Pentylenetetrazole , Anti-Anxiety Agents/pharmacology , Anticonvulsants/chemistry , Antidepressive Agents/pharmacology , Molecular Docking Simulation , Pentylenetetrazole/adverse effects , Pyridines/chemistry , Pyrimidines/chemistry , Receptors, GABA-A , Structure-Activity Relationship
3.
J Neuroophthalmol ; 42(2): 251-255, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-1596393

ABSTRACT

BACKGROUND: The opsoclonus-myoclonus-ataxia syndrome (OMAS) represents a pathophysiology and diagnostic challenge. Although the diverse etiologies likely share a common mechanism to generate ocular, trunk, and limb movements, the underlying cause may be a paraneoplastic syndrome, as the first sign of cancer, or may be a postinfectious complication, and thus, the outcome depends on identifying the trigger mechanism. A recent hypothesis suggests increased GABAA receptor sensitivity in the olivary-oculomotor vermis-fastigial nucleus-premotor saccade burst neuron circuit in the brainstem. Therefore, OMAS management will focus on immunosuppression and modulation of GABAA hypersensitivity with benzodiazepines. METHODS: We serially video recorded the eye movements at the bedside of 1 patient with SARS-CoV-2-specific Immunoglobulin G (IgG) serum antibodies, but twice-negative nasopharyngeal reverse transcription polymerase chain reaction (RT-PCR). We tested cerebrospinal fluid (CSF), serum, and nasopharyngeal samples. After brain MRI and chest, abdomen, and pelvis CT scans, we treated our patient with clonazepam and high-dose Solu-MEDROL, followed by a rituximab infusion after her formal eye movement analysis 10 days later. RESULTS: The recordings throughout her acute illness demonstrated different eye movement abnormalities. While on high-dose steroids and clonazepam, she initially had macrosaccadic oscillations, followed by brief ocular flutter during convergence the next day; after 10 days, she had bursts of opsoclonus during scotopic conditions with fixation block but otherwise normal eye movements. Concern for a suboptimal response to high-dose Solu-MEDROL motivated an infusion of rituximab, which induced remission. An investigation for a paraneoplastic etiology was negative. CSF testing showed elevated neuron-specific enolase. Serum IgG to Serum SARS-CoV2 IgG was elevated with negative RT-PCR nasopharyngeal testing. CONCLUSION: A recent simulation model of macrosaccadic oscillations and OMAS proposes a combined pathology of brainstem and cerebellar because of increased GABAA receptor sensitivity. In this case report, we report 1 patient with elevated CSF neuronal specific enolase, macrosaccadic oscillations, ocular flutter, and OMAS as a SARS-CoV-2 postinfectious complication. Opsoclonus emerged predominantly with fixation block and suppressed with fixation, providing support to modern theories on the mechanism responsible for these ocular oscillations involving cerebellar-brainstem pathogenesis.


Subject(s)
COVID-19 , Cerebellar Ataxia , Ocular Motility Disorders , Opsoclonus-Myoclonus Syndrome , COVID-19/complications , Cerebellar Ataxia/complications , Clonazepam/therapeutic use , Female , Humans , Immunoglobulin G , Methylprednisolone Hemisuccinate/therapeutic use , Ocular Motility Disorders/diagnosis , Ocular Motility Disorders/drug therapy , Ocular Motility Disorders/etiology , Opsoclonus-Myoclonus Syndrome/diagnosis , Opsoclonus-Myoclonus Syndrome/drug therapy , Opsoclonus-Myoclonus Syndrome/etiology , RNA, Viral/therapeutic use , Receptors, GABA-A/therapeutic use , Rituximab/therapeutic use , SARS-CoV-2
4.
Eur Neuropsychopharmacol ; 45: 39-51, 2021 04.
Article in English | MEDLINE | ID: covidwho-1390226

ABSTRACT

Cinazepam C19H14BrClN2O5, ("LevanaⓇ ІC") a partial GABAA receptor agonist, and its active metabolite 3-hydroxyphenazepam C15H10BrClN2O2 were comparatively assessed in vitro using nerve terminals isolated from rat cortex (synaptosomes). At the presynaptic site, cinazepam (100 and 200 µM) facilitated synaptosomal transporter-mediated [3H]GABA uptake by enhancing both the initial rate and accumulation, and decreased the ambient level and transporter-mediated release of [3H]GABA. Whereas, 3-hydroxyphenazepam decreased the uptake and did not change the ambient synaptosomal level and transporter-mediated release of [3H]GABA. To exclude GABA transporter influence, NO-711, the transporter blocker, was applied and it was found that exocytotic release of [3H]GABA decreased, whereas tonic release of [3H]GABA was not changed in the presence of both cinazepam or 3-hydroxyphenazepam after treatment of synaptosomes with NO-711. In fluorimetric studies using potential- and pH-sensitive dyes rhodamine 6G and acridine orange, respectively, it was found that cinazepam hyperpolarized the synaptosomal plasma membrane, and increased synaptic vesicle acidification, whereas, 3-hydroxyphenazepam demonstrated opposite effects on these parameters. Therefore, action of cinazepam and its active metabolite 3-hydroxyphenazepam on GABAergic neurotransmission was different. Therapeutic effects of cinazepam can be associated with its ability to hyperpolarize the plasma membrane, to increase synaptic vesicle acidification and capacity of its active metabolite 3-hydroxyphenazepam to inhibit GABA transporter functioning.


Subject(s)
Receptors, GABA-A , gamma-Aminobutyric Acid , Animals , Benzodiazepines , Benzodiazepinones , GABA Plasma Membrane Transport Proteins , GABA-A Receptor Agonists , Presynaptic Terminals , Rats , Rats, Wistar , Synaptosomes
SELECTION OF CITATIONS
SEARCH DETAIL